If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-60x+32=0
a = 9; b = -60; c = +32;
Δ = b2-4ac
Δ = -602-4·9·32
Δ = 2448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2448}=\sqrt{144*17}=\sqrt{144}*\sqrt{17}=12\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12\sqrt{17}}{2*9}=\frac{60-12\sqrt{17}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12\sqrt{17}}{2*9}=\frac{60+12\sqrt{17}}{18} $
| -w+180=116 | | 8+-11=x | | p+1.3=12.6 | | 35x70=X35. | | n+27=55 | | Y+5x=45.5 | | 11-6x=-19 | | n-27=55 | | 4(2x+3)=9(3x-5 | | Y=2•0.68^x | | 12.8+x=4.7 | | 5(x+16)=915 | | 5n+9=-49 | | x=+1.9=5.36 | | 1/3(m+4)+6=1/4(3m-1)-2 | | 5×+7y=4,×+2y=2 | | 13.6=-6+4n | | h/27—-864=884 | | u-1.77=4.8 | | 36.25=6s+4.21 | | 3(x-4)6=12 | | 6x-10=6x+8 | | (6×-5)+(x+17)=180 | | 7x*2=5x-6 | | 7x-(16+3x)=-4 | | w-2.1=8.5 | | T=3s+4.43 | | h/27–-864=884 | | (11x-8)=7(x-1) | | -6(2y+2)=-8(y+5) | | h/24—-863=884 | | 1/4x^2=12 |